
Exploiting Phase Transitions for the Efficient
Sampling of the Fixed Degree Sequence Model

Christian Brugger, André Lucas Chinazzo,
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Abstract—Real-world network data is often very noisy and
contains erroneous or missing edges. These superfluous and
missing edges can be identified statistically by assessing the
number of common neighbors of the two incident nodes. To
evaluate whether this number of common neighbors, the so
called co-occurrence, is statistically significant, a comparison with
the expected co-occurrence in a suitable random graph model
is required. For networks with a skewed degree distribution,
including most real-world networks, it is known that the fixed
degree sequence model, which maintains the degrees of nodes, is
favourable over using simplified graph models that are based on
an independence assumption. However, the use of a fixed degree
sequence model requires sampling from the space of all graphs
with the given degree sequence and measuring the co-occurrence
of each pair of nodes in each of the samples, since there is no
known closed formula for this statistic. While there exist log-
linear approaches such as Markov chain Monte Carlo sampling,
the computational complexity still depends on the length of the
Markov chain and the number of samples, which is significant
in large-scale networks. In this article, we show based on ground
truth data that there are various phase transition-like tipping
points that enable us to choose a comparatively low number of
samples and to reduce the length of the Markov chains without
reducing the quality of the significance test. As a result, the
computational effort can be reduced by an order of magnitudes.

I. INTRODUCTION

The identification of so-called network motifs, i.e., sub-
graphs whose occurrence is statistically significant, is of
general interest, especially in biological data sets [1]. The
significance of a subgraph is tested by counting its occurrence
in an observed real-world network and by comparing it to
the expected occurrence in a suitable random graph model. A
random graph model is defined as a set of graphs together with
a probability mass function that assigns a probability to each
member of the set, summing up to 1. While not specifically
a network motif, the number of common neighbors of two
nodes x, y, their so-called co-occurrence coocc(x, y), can also
be tested on its statistical significance in the same way. Zweig
and Kaufmann proved that a simple independence model,
which estimates the expected co-occurrence of two nodes to
be deg(x)deg(y)/2m, where deg(x) denotes the degree of
node x, is wrong if the degree sequence is skewed [2], [3].
The degree sequence DS(G) of a graph G is defined as the
sequence of degrees of the nodes of G in some fixed order.

Thus, a more detailed random graph model has to be used, such
as the set G(DS) of all simple graphs with the same degree
sequence as the observed network and uniform probability. In
the following, this model is called the fixed degree-sequence
model or FDSM. Note that a graph is simple if it does not
contain multiple edges between the same nodes and no self-
loops.

The statistical significance of the number of common
neighbors can be used to do link assessment, i.e., to evaluate
whether an existing edge in a graph is likely to be a true-
positive and whether a non-existing edge is likely to be a
false-negative [4], [5], [6]. A link assessment results in a
ranking of all pairs of nodes, where (existing) edges with a
high ranking are assumed to be true-positives and pairs of
nodes that are ranked highly but are not yet connected by an
edge are considered to be false-negatives. This assumption can
be quantified for networks with an assigned ground truth, i.e.,
networks for which there is a noisy edge set containing false-
positives and false-negatives, and a verified set of edges.

Unfortunately, G(DS) is far to large to enumerate it.
Sampling from G(DS) therefore is the only viable option of
obtaining an estimate of the expected co-occurrence of two
nodes. Del Genio et al proposed an exact sampling scheme,
which constructs graphs with an arbitrary degree sequence
with uniform probability [7]. However, the complexity of this
algorithm is in O(n3), making it an infeasible choice for
the repeated sampling of large-scale networks. As a result,
a Markov chain Monte Carlo approach is frequently used in
practice, even though the exact mixing time and therefore the
computational complexity are unknown. In this article, we
only consider undirected, bipartite networks and thus give
an overview of the Markov chain for such graphs in the
following [8]. Analogous approaches exist for non-bipartite
and even directed graphs [9]. Starting from the observed
network, in every step two edges e1 = (a, b) and e2 = (c, d)
are chosen uniformly at random from all edges and it is tested
whether they are swappable, i.e., whether e′1 = (a, d) and
e′2 = (c, b) are already in the graph. If they are swappable, the
tested edges e′1 and e′2 are inserted into the graph and e1, e2
are deleted. A pre-defined number of swap tests are done—
regardless of the result of the test—and it can be shown that
after a sufficient number of tests, the resulting graph is any
graph from G(DS) with uniform probability. The sufficient



number, the so-called mixing time, is to date unknown for
this specific Markov chain—and the known upper bounds
(e.g., [10], [11]) are of little practical relevance. They are
either too big like Jerrum et al’s result in O(n14 log4 n) or
not computable for large networks like Brualdi’s result, who
showed that the convergence time depends on the spectral gap
of the transition matrix of the Markov Chain [12]. Computing
the latter would require to know all possible graphs in G(DS)
and their transitions.

Depending on the size of the graph and the required data
structures to store it in memory, a single swap test and updating
the data structure(s) after a successful swap cost between O(1)
and O(log n) or O(min{deg(x), deg(y)}). Note that, as for all
Markov chains with known degrees, there is the probability of
an importance sampling, but again, it is infeasible for large
data sets [13].

A safe number of steps is considered to be in O(m logm).
It is the lower bound such that, expectedly, every edge is
chosen at least once for a swap test. Often, the safe number of
steps is also used for a so-called burn-in phase where one tries
to move away from the often very strongly structured observed
network to one that is more random. From this instance, a
chain of swaps is started, where every x-th resulting graph
is tested for its structural features—these graphs comprise the
sample against which the statistical significance of structural
features of the observed graph is tested. Again, a “safe” size
of this set is often used, for example, 10, 000 samples. This
scheme will be called the serial burn-in (sampling) scheme
in the following. To empirically analyze the necessary burn-
in length, Gionis et al. proposed empirical convergence tests
based on practices from data mining, namely observing the
convergence of the number of so-called frequent item sets or
their frequencies [14], [13]. By plotting the number of frequent
item sets in dependence of the number of swap tests, it can be
seen that this number stabilizes (Gionis et al., Fig. 4). However,
counting frequent item sets is computationally expensive and
Gionis et al. do not provide an online stopping criterion that
allows to stop sampling.

This article looks at link assessment in bipartite graphs,
i.e., given a graph G = (VL ∪ VR, E) with a node set VL,
a node set VR and an edge set E connecting nodes of VL
with nodes of VR, we assess whether any two nodes in VR
have a statistically significant number of neighbors in common.
This information can then be used to build insightful one-mode
projections of bipartite graphs [2], [3], [15]. In this article we
provide two online heuristics, one to determine a sufficient
number of the number of swaps, and one to determine a
sufficient number of samples. For the first time, the quality of
the resulting statistics is tested against ground truth for the link
assessment task which shows astonishing tipping points: while
at first—with low numbers of swap tests—the link assessment
is not good, a small increase has a strong impact on the
quality of the link assessment—an effect that is often called
a phase transition. Similarly, computing the co-occurrences
for all pairs of nodes of interest in one sample is costly (in
Ω(n2) to O(n3), depending on data structures and density).
Thus, reducing the number of samples is also of interest and,
again, we find that there is a phase-transition-like behavior in
the number of samples. Finally, especially for bipartite graphs
in which the hidden connections between nodes on one side

of the graph are assessed [2], [3], [15], it can be beneficial to
reduce the graph by sampling from nodes of the other side. For
example, in market-basket data with millions of customers but
only thousands of products, it might not be necessary to look
at the whole data set but to reduce it to the market baskets
of 50, 000 customers. Again, we find a phase-transition like
behavior in this case as well that points to an optimal set. By
optimizing these parameters, we achieve speedups of up to one
order of magnitude.

Our novel contributions are:

• We show that there is a phase transition-like behavior in
the number of swaps, the number of samples, and the
sample size of the left-hand side in a bipartite graph.

• We present two online heuristics for estimating just the
required number of swaps and number of samples.

• We demonstrate the effectiveness and stability of our
heuristics in empirical studies for multiple data sets.

The next section introduces definitions from statistics to
assess the significance of the co-occurrence of two nodes in a
bipartite graph.

II. DEFINITIONS

Given a bipartite graph G = (VL ∪ VR, E) as defined
above, the co-occurrence of two nodes x, y ∈ VR is defined
as the number of their common neighbors in VL. This value
is bounded from above by min{deg(x), deg(y)}, the minimal
degree of both nodes. Thus, its absolute value cannot be used
to understand its significance, since nodes with a small degree
would always be disfavored. Their expected co-occurrence
with respect to some random graph model, e.g., the FDSM
(cooccFDSM (x, y)), is defined as the expected co-occurrence
in all graphs in the model, given their probability. If it is
not possible to compute it, it is approximated by the average
observed co-occurrence in a uniform sample from the random
graph model. Note that the approximation quality depends on
the sample size and on the quality of the sample, as introduced
in [2]. For a sample from a random graph model, two statistical
measures can be computed with respect to a given pair of
nodes and their observed co-occurrence. The p-value denotes
the fraction of observed samples in which the co-occurrence of
x and y was at least as high as the observed one; the z-score
of the observed co-occurrence is given by the co-occurrence
distribution of x and y in the sample:

p-value(x, y) =

s∑
i=1

{
1, if coocci(x, y) > coocc(x, y)

0, otherwise
,

z-score(x, y) =
leverage(x, y)

stddev ({coocci(x, y)}i=1,...,s)
,

where s is the number of samples and leverage is defined as
in [2]. Based on previous work by Zweig et al. [2], [3] and
Horvát et al. [15], two nodes with a high z-score, or low p-
value, are connected in a one-mode projection of the bipartite
graph. It often shows that they are also semantically similar
and this method has been used to identify similar movies [2],
[3] or biologically similar proteins [4]. In this article, we rank
all edges by their p-value and break ties by the z-score.



III. GROUND TRUTH AND PPVk

We are using two data sets, the Netflix competition data set
and a medium size MovieLens data set1; both data sets show
ratings of films by a number of users. By setting a threshold,
the data can be represented as a bipartite graph between users
and movies, where an edge (u, j) represents that user u likes
film j. By finding significant co-occurrences between any two
movies i, j, a one-mode projection can be obtained [3]. We
use a ground truth data set based on movie sequels such as
Star Wars or James Bond, first used in a paper by Horvát and
Zweig [6] which can be used for both data sets. For a given
set of movie sequels, the idea is that the most significant co-
occurrences are assumed to be with other sequels from the
same set. Thus, ranking all pairs of films (where at least one
is a sequel from a series) by the significance of their co-
occcurrence, the most significant pairs should be sequels from
the same set. The quality of such a ranking can be evaluated by
the positive predictive value at k PPVk, where the k indicates
the number of pairs of films in the ground truth and the PPV
is the fraction of correctly identified pairs from the ground
truth in the set of the k highest ranked pairs of films. This
measure was proposed by Liben-Nowell and Kleinberg as more
meaningful in the very unbalanced link prediction problem,
which is very similar to the problem proposed here [16].

IV. PHASE TRANSITIONS

For each parameter of the algorithm, i.e., the number of
swaps, the number of samples and the length of the burn-in-
phase, the PPVk can be computed for the resulting ranking
of the co-occurrences. Here we show that the quality of the
ranking improves very suddenly in all of the three parameters.
This indicates on the one hand that these parameters are often
smaller than anticipated, but also that they have to be chosen
carefully since the quality does not rise linearly in any of them:
choosing too low a number of, e.g., swaps can significantly
harm the quality of the algorithm. A final question to be
analyzed is whether it is reasonable to take the full Netflix
data set with 100 million ratings or if a random subset of the
data is good enough.

Fig. 1. Quality over number of samples. For a wide variety of data sets,
narrow phase transitions are present.

For the runtime of the algorithm, the most important factor
is the number of samples, since the co-occurrence has to be

1The 100k MovieLens data set, available from http://grouplens.org/datasets/
movielens/.

computed for every pair of movies of interest which - in gen-
eral - is in O(n3). Fig. 1 shows a very steep transition in quality
in dependence of the number of samples: The full MovieLens
data set requires about 1024 samples to reach a PPVk-value
of 0.286 ± 0.005. Spending more samples only marginally
improves the results, e.g., for 4096 samples the PPVk-value
is 0.291 ± 0.002. For the full Netflix data set, 384 samples
already result in a PPVk-value of 0.4206 ± 0.0019, while
16, 384 samples only improve this value to 0.4217 ± 0.0012,
but would take 43 times longer to compute. Note, however, that
this steep, phase-transition-like behavior also has the downside
that too small a number of samples decreases the quality
enormously: using 64 instead of 384 samples still yields a
PPVk of 0.20 ± 0.03. However, using 48 samples decreases
it to a meaningless value of 0.001± 0.001.

The number of swaps per sample is computationally less
important, but the results again show that too low a number
of swaps per sample in the serial burn-in sampling scheme
can strongly decrease the quality of the result, even if 10, 000
samples are drawn from the random graph model. Fig. 2 shows
the steep transitions when varying the number of swaps.

Fig. 2. Quality over number of swaps. For a wide variety of data sets, narrow
phase transitions are present, similarly to what can be observed varying the
number of samples.

Fig. 3. Quality over the number of users in the Netflix data set. The users
are selected at random from the 478k total users in the data set. Each point
is the average of 10 random subsets.

Fig. 3 shows the quality of the ranking for different sizes
of subsets of users in the bipartite graph. The maximally
achievable quality strongly depends on the size of the set of
users: with 1, 000 users, a PPVk-value of only 0.20±0.04 can
be achieved, while the full data set allows for a PPVk-value



of 0.424±0.007. Fig. 3 shows the quality in dependence of the
number of users and the number of samples from the random
graph model. The data shows that taking 100, 000 users out of
the 480, 000 uniformly at random (averaged over 10 of these
sets) allows for the same overall quality, but requires more
samples from the FDSM. It seems that, in general, a smaller set
is sufficient if more samples from the random graph model are
made to assess the significance of the observed co-occurrence
values.

In this section we have shown that there are various phase
transition-like changes in the resulting quality of the link
assessment that should be considered when selecting a subset
from a larger data set, the number of swaps in a serial burn-
in-scheme, and the number of samples. While we had ground
truth to evaluate this behavior in these cases, other data sets do
not necessarily come with a precompiled ground truth. Thus,
the next section introduces an online heuristic for large data
sets that can be used to estimate the necessary number of
swaps and samples to assess the significance of the observed
co-occurrence in a bipartite graph.

V. HEURISTICS

Fig. 1 shows a sharp phase transition for the full Netflix
data set from a PPVk of 0 to 0.41 between 48 and 192
samples; after that the PPVk is almost constant even up to
10k samples. Since the runtime is linear in the number of
samples, there is no point in generating more than 192 samples
from a practical perspective. However, we see in Fig. 1 that
the transition is also data dependent. Analogously, the same
observation can be made for the number of swaps. To reduce
the overall runtime without decreasing the quality of the result,
it is thus necessary to monitor the sampling process online and
stop when the number of swaps and the number of samples is
sufficient. In the following we propose two online heuristics
that indicate the minimum required #samples and #swaps,
without the usage of any kind of ground truth.

A. Heuristic for #swaps: Same Degree Coocc Convergence

The number of swaps needs to be high enough, otherwise
the sampled graphs are not independent from the starting
graph. The idea of the swap heuristic is to build a correlated
variable θ that indicates when the Markov chain has mixed,
i.e., the constructed graph is independent from the starting
point. For small graphs, this number can be set to m logm,
the number of steps such that, expectedly, every edge has
been selected at least once. For larger graphs, this number is
prohibitively large. However, larger graphs are likely to contain
a set of pairs of nodes with the same degree that start with very
different co-occurrences. For example, there might be seven
nodes with degree 10 and four nodes with degree 20. Thus,
there are 28 pairs of nodes with the same degrees.

While in every random sample the coocc(a, b) of two
nodes a, b is different, we know that the average over all
samples cooccFDSM (a, b) converges to a fixed number that
only depends on the degrees of a and b. Thus, it is also the
same for all pairs of nodes with the same degrees:

∀a, b, c, d ∈ VL : deg(a) = deg(c) ∧ deg(b) = deg(d)

⇒ cooccFDSM (a, b) = cooccFDSM (c, d). (1)

Fig. 4. Convergence of the cooccFDSM for the Netflix data set with 10k
users.

Fig. 4 shows the cooccFDSM of four different movie pairs in
the Netflix data, with the same degrees but different observed
co-occurrences (points on the left of the x-axis). The figure
shows the average co-occurrence of 10, 000 sampled graphs
in dependence of the number of swaps in the serial burn-in
sampling scheme. It can be clearly seen that the average co-
occurrence of all pairs converges to the same value.

Based on this insight, we propose a function θ(#swaps) to
determine the optimal number of swaps as described in the
following: From the data set, extract all sets D(x, y) of pairs
of nodes that have at least Np node pairs with the same degrees
x and y. Compose G by selecting Np pairs u.a.r. from all sets:

D(x, y) = {(a, b) | ∀a, b ∈ Vl : deg(a) = x, deg(b) = y},
G = {(d1, .., dNp

) ∈ D(x, y) | ∀x, y ∈ N : |D(x, y)| ≥ Np}.

From this set G take Ng groups at random: g1, ..gNg ∈ G. In
each of these groups test the convergence of the average co-
occurrence by computing the normalized standard deviation
δ := s/m of the cooccFDSM in this group, where s is the
standard deviation of the sample and m is its mean.

The function θ is then defined as the mean over all
deviations δ, see Fig. 4.

C(gi, #swaps) = {coocc#swaps
FDSM (a, b) | ∀(a, b) ∈ gi},

δ(gi, #swaps) =
std [C(gi, #swaps)]
mean [C(gi, #swaps)]

,

θ(#swaps) =
1

Ng

Ng∑
i=1

δ(gi, #swaps).

To empirically assess the quality of the heuristic for finding
the minimal number of required swaps, the ground truth can
be used once again: Fig. 5 shows the value of θ over #swaps
for Np = 4 and Ng = 24 in blue and the PPVk in yellow. The
heuristic shows an almost inverted behavior with respect to the
PPVk, indicating a good correlation. Thus, when θ approaches
0, we assume that the quality of the resulting significance test
is reliable.

Based on θ, we now identify a good #swap without relying
on the ground truth. Note that for small #swaps it is very
efficient to evaluate θ, even for 10k samples. Starting with a



Fig. 5. Swap heuristic θ and the PPV.

low #swaps, we continuously increase it until θ < θmin. A
threshold of θmin = 0.01 appears to be a reasonable choice
in our tests, which results in an average relative error of 1%
in the co-occurrence (coocc). The complete swap heuristic is
shown in Algorithm 1.

Data: Graph G(VL ∪ VR, E) with vertices VL and VR
and edges E, VR being the vertices of interest,
Ng, Np, θmin, #samples;

Result: #swaps
G0 := G randomized with |E| ln |E| swaps;
Select Ng groups with Np pairs of nodes with same
degrees at random from VR each;
#swaps := max(|VL|, |VR|) ln max(|VL|, |VR|);
shigh := |E| ln |E|;
do

#swaps :=
√

#swaps · shigh;
Evaluate θ(#swaps) with given #samples from G0;

while θ(#swaps) > θmin;
Algorithm 1: Same Degree Coocc Convergence Swap
Heuristic

B. Heuristic for #samples: Internal PPVk
The heuristics for determining an ideal number of samples

is based on the idea that the ranking of the most significant
co-occurring pairs (pairs of nodes with the most significant
number of common neighbors) should stabilize as the number
of samples increases.

We thus propose to use the internal PPVk heuristic, which
makes use of an “internal ground truth”, defined as the k pairs
of nodes that were ranked highest in the previous iteration,
where the ranking is based on the p-value and ties are broken
with respect to the z-score. Then, based on this internal ground
truth GT ′, the PPVk of the current result is calculated, i.e.,
we quantify how much the newly sampled graph(s) change
the ranking of the top k′ pairs and stop if that value is larger
than some threshold value α. Algorithm 2 shows the steps in
details.

Constructing the internal ground truth GT ′, while not
increasing the complexity of the algorithm, is still computa-
tionally relevant. Instead of constructing it for every sample,
we therefore only construct it every samplesstep samples. The
stopping quality α and the length k′, in turn, should be high
enough to guarantee a sufficient stability, while still being
small enough to keep the overhead as small as possible.

Data: Graph G(VL ∪ VR, E) with vertices VL and VR
and edges E, VR being the vertices of interest,
#swaps, k′, samplesstep, α;

Result: ranking according to p-value and z-score for all
pairs of vertices (u, v) ∈ (VR × VR);

Calculate coocc(u, v) ∀ (u, v) ∈ (VR × VR);
G0 := G; i := 0;
do

GT ′ := k′ pairs (u, v) with the highest ranking of
Gi ;
for k := 1 to samplesstep do

i := i+ 1; Gi := Gi−1;
Randomize Gi with given #swap;
Calculate coocci(u, v) ∀ (u, v) ∈ (VR × VR);

end
PPV ′ := PPVk′(List of k′ highest ranked node
pairs containing at least one node from GT ′, GT ′);

while PPV ′ < α;
Calculate ranking according to Section V-A;

Algorithm 2: Internal PPVk Sample Heuristic

In Fig. 6 the output of the heuristic for the full Netflix data
set is shown, with the following configuration:

samplesstep = 16; k′ = 0.2% |VR|2; α = 0.95.

The PPVk for the Movie Ground Truth is shown in blue. The
dotted lines denote the internal PPV ′. While the two curves
for each data set are not perfectly aligned, the internal PPVk
converges later than the ground-truth-based PPVk, such that
it is safe to use the heuristic as a stopping point. Based on the
graph, we conclude that the internal PPVk gives us a stable
and clear indicator of when to stop the algorithm.

Fig. 6. Sample heuristic PPV’ and PPV.

C. Results

Based on the two stopping heuristics, the runtime of the
algorithm can be dramatically reduced, especially for the large
Netflix data set (Table I): the swap heuristics alone appears
to be helpful mostly for large enough graphs: the MovieLens
data is so small that the overhead needed to compute the
heuristics almost diminishes savings in the overall runtime. For
the medium-sized Netflix subset (100k users), the heuristics
decrease the runtime by a factor of 1.5. Computing the
statistical significance of all co-occurrences with a “safe” burn-
in phase of m logm = 109 swaps and the same number of



TABLE I. RUNTIME AND QUALITY BEHAVIOUR OF THE HEURISTICS.

Data set Samples Swaps Runtime PPV

State-of-the-art
Netflix, 487k users 10,000 109 20 h 0.422
Netflix, 100k users 10,000 2.6× 108 5.5 h 0.425
MoviesLens 10,000 1.5× 107 877 s 0.290

Swap Heuristic1:
Netflix, 100k users 10,000 6.8× 107 (4x) 0.2+3.4 h (1.5x) 0.424 (−0.2%)
MovieLens 10,000 1.5× 106 (10x) 110+554 s (1.3x) 0.290 (±0.0%)

Sample Heuristic2:
Netflix, 487k users 640 109 1.42 h (14x) 0.418 (−0.9%)
Netflix, 100k users 2,944 2.6× 108 1.66 h (3.3x) 0.419 (−1.3%)
MovieLens 3,456 1.5× 107 326 s (2.7x) 0.291 (+1.0%)

1 Np = 4; Ng = 24; θmin = 0.01
2 samplesstep = 128; k′ = 0.2% |VR|2; α = 0.95.

swaps for each subsequent sample with a total of 10, 000
samples took 20 hours. Mind that this time was only achievable
by running 128 sampling chains in parallel on a cluster. For
example, computing the algorithm on only one CPU would
have taken approximately 3.5 months! While with the swap
heuristic the computation time can be reduced by over an hour,
the improvement of the runtime by reducing the number of
samples from 10, 000 to 640 is even larger, namely a factor
of 14x, while reducing the quality of the link assessment by
only about 1%. Even if the algorithm ran on a single CPU,
the runtime would now be only slightly over a day. Similarly,
also the MovieLens data profits from the sample heuristics by
reducing the runtime by a factor of 2.7.

VI. CONCLUSION

While the use of the FDSM to assess the statistical signifi-
cance of structural patterns in graphs has often been proposed,
its application was so far infeasible for large-scale data since
there is no practically usable known upper bound on the mixing
time of the Markov chain that allows to sample uniformly at
random from the FDSM. Similarly, there is no known bound
on the number of necessary samples to achieve a good quality
of the expected values by the observed means in the sample.

Here we have shown that two online heuristics can help
to determine a sufficient number of swaps and samples to
achieve high-quality results with respect to the quality that is
achievable with “safe” parameters. This discovery is based on
the use of ground truth data that allows evaluating the quality
of the resulting significance. The reduction in runtime by a
factor of up to 14 on the used data makes it possible to apply
the proposed algorithm to the full Netflix data set and get the
result within two days on a single-core CPU without reducing
the quality significantly. Further research will have to show
whether the results can be transferred to other kind of network
data like protein-protein interaction data or social network data.
However, here it is much more difficult to obtain ground truth
data for the evaluation.

Reducing the data to a much smaller subset without
diminishing the method’s capabilities is another important
achievement and we showed that a random sample of 100k
users from the Netflix data set is sufficient to obtain a result
with almost the same quality as the much larger full data set
with 480k users. Further research is necessary to understand
whether there is a heuristic that does not rely on any ground

truth to determine the necessary size of a subset of the data to
achieve a high-quality link assessment.
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